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FOREWORD

The results presented in this report were obtained under Sandia
Contract 82-5617. This research was partially funded under NASA Grant
NGL-44-Q01 -044 as a result of interest in the thermal cycle fatigue pro-
blems as related to the Space Shuttle. Appreciation is expressed to Dr.

Fred Stebbins of the Manned Spacecraft Center for constructive criticism.

Two papers have been accepted which relate to different aspects of
the research reported herein. The first emphasizes the formulation and
computational procedures and was presented at the National Symposium on
" Computerized Structural Analysis and Design held at George Washington
University, Washington, D. C. on March 27-29, 1972. The second paper
summarizes the evaluation of the solution procedures énd was presented

at the ATAA/ASME/SAE 13th Structures, Structural Dynamics, and

Materials Conference held in San Antonio, Texas, on April 10-14, 1972.
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ABSTRACT

In this report computational and solution procedures are explored
for geometric and/or material nonlinearities. A highly efficient computa-
tional procedure based on a combined finite element-finite difference
approach is developed. Several different solution procedures are evaluated
and particular solution procedures are recommended for geometric, material,
and combined geometric-material nonlinearities. It is concluded that, through
a proper choice of computational and solution procedures, nonlinear problems
may be solved in reasonable times on the computer. It is also concluded

that the development of computer codes for large scale problems is feasible

and potentially economical.




SIGNIFICANT CONTRIBUTIONS

The original purpose of this research was to evaluate the efficiency
of various solution procedures for material non]inearities and for combined
material-geometric nonlinearities. However, it was found during the course
of this investigation that more efficient computational procedures were needed
for computing the plastic strains, pseudo forces, and tangent stiffness
matrices. Advances in these areas in addition to the evaluation of solution
procedures are considered to be significant. In summary the significant
contributions are: |

1. A literature survey is given which summarizes the contributions of
other researchers for material nonlinearities and combined geometric-material
nonlinearities.

2. The development of a computational procedure for stresses and plastic
strains which stays on the assumed uniaxial stress-strain curve regardless of
the size of the load increment.

3. A formulation of all solution procedures from equations of equili-
brium in terms of pseudo forces for all nonlinear terms.

4. The formulation of Item 2 leads directly to a computional proce-
dure which is highly efficient. Computation of the tangent stiffness matrix
for combined geometric-material nonlinearities requires very little compu-
tational effort over that required to compute the pseudo forces. The computa-
tional procedure is an crder of magnitude faster than the procedures quoted
by other researchers.

5. Solution procedures are evaluated in terms of accuracy, usability,

iii
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and computational effort. Plastic loading combined with elastic unloading

is used in the evaluation.
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NOMENCLATURE

row matrix

column matrix

square matrix

area of element

matrix relating strains to generalized displacements and
scalar defined by Eq. 66.

matrix relating increment of plastic strain to increment
of total strain, also scalar coefficient in Eq. 13.
matrix relating stress to elastic strain

Young's Modulus

scalar relating increment of uniaxial stress to increment
of uniaxial strain

matrix of stiffness coefficients

meridional length of element

number of subincrements used in computing plastic

strain increments

load parameter (P < = 100)

ma
normalized load vector

psuedo force due to nonlinearities
undeformed volume

weighting factor for numerical integration
scalar coefficient in Eq. 13

linear expression for mid-surface strains

force unbalance in equation of eauilibrium (Eq. 2)

ix




q = generalized displacements

r = radial coordinate for mid-surface of shell
t = thickness of shell

u = displacement in meridional direction
W = displacement normal to shell

z = distance from mid-surface of shell
A = increment

€ = strain

€ = equivalent uniaxial value of strain
8 = ¢ircumferential angle

X = changes in curvature

v : = Poisson's ratio

o = stress

¢ = slope of shell element (Fig. 3)
Superscripts

= differentiation with respect to load parameter P.

A = area

e = elastic contribution

NL = contribution due to geometric nonlinearities

P = contribution due to material plasticity

T = thermal contribution

z = pertaining to factors that depend on the distance from the

mid-surface
Subscripts
i = load increment, degree of freedom, dummy summation variable

J = summation index
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L = linear contribution

NL = nonlinear contribution

s = meridional direction

] = circumferential direction
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INTRODUCTION

The finite element method of structural analysis has advanced quite
rapidly on many fronts in recent years. One such area is in nonlinear
analyses where the nonlinearities are due to large rotations and/or plastic
deformations. Advancements in this field have led to more efficient designs
ranging from pressure veﬁse]s to thermal protection systems for space
vehicles where thermal fatigue is quite important.

With the increasing interest in nonlinear analysis, many investigators
have realized that most of the present procedures for conducting nonlinear
analyses for large systems involving many degrees of freedom are very in-
efficient and require excessive amounts of computer time. This is especially
true for nonlinear analysis by the finite element method. In fact, some
proponents of the finite difference procedures have stated that the finite
element method is not economical for nonlinear analyses.

The long computer run times may be traced to several different sources.

1. Formulation: The majority of the computer codes for the geometric
nonlinear analyses use the Eulerian formulation which requires that the
nonlinear stiffness matrix must be transformed from the deformed position
to the global coordinates. This transformation is quite time consuming.

In addition, some codes include nonlinearities in the curvature as well
as the mid-surface strains, which may or may not be needed.

2. Excessive use of matrices: Many researchers describe needed
quantities as a long series of matrix multiplications, even when many of
the matrices contain only a few non-zero terms. While matrix notation
serves as an effective mathematical tool, many of the multiplications

should be performed as summations over only the non-zero variables.




3. Solution procedure for nonlinear problems: By far the most popular

procedure for the solution of problems in nonlinear structural mechanics is
the incremental approach. For geometric nonlinear problems the incremental
approach is very inefficient. However it is quite easy to use which probably

accounts for its popularity.

4. Approximations for nonlinear terms: Some researchers prefer to use

the same displacement function for the evaluation of the nonlinear terms

as was used to obtain the stiffness matrix. For some problems this may re-
quire numerical integration of a large number of terms for each load step
and thus is very time consuming. In general, the degree of approximation
which should be used depends on the solution procedure. For example, it
does not seem justifiable or economical to make crude approximations for
the nonlinear terms if an ‘incremental approach is being used where the
majority of the computer time is expended in the solution of the equations.

The above example is counter to the procedures developed herein.

Computational Philosophy

To better interpret the contents of this report it is deemed desirable
to explain the philosophy adopted at Texas A&M. First it is believed that
no effort should be spared in computing the element stiffness matrix. For
shells of revolution the authors and their coHeagues78 use curved elements,
higher order displacement functions, and static condensation to obtain the
element stiffness matrix. Secondly, many simplifying approximations are
used in the treatment of nonlinearities. For geometric nonlinearities

this consists of using conical frustum elements and linear functions for
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all displacements. This degree of approximation is justified by the fact
that conical frustum elements have proven to be useful in computing the
midsurface strains and rotations. As the geometric nonlinear terms depend
only on the midsurface strains and rotations, they are computed to a suf-
ficient degree of accuracy. The effects of plastic deformations are com-
puted by assuming that the plastic strains are constant over the length of
the element but vary through the thickness. A1l strains in the nonlinear
terms are written as finite difference expressions in terms of the nodal
displacements.

The simplifying assumptions for the nonlinear analysis of shells of
revolution are directed somewhat by the narrow band width of the stiffness
matrix. Very little computer time is reauired to solve the set of equations
and, thus, it has been found more efficient to use the simplifying assumptions
for the nonlinear terms and a large number of elements than to use a few
complex elements. This philosophy has led to the development of computer
codes which yield accurate solutions with computer time requirements com-
petitive with any other code.

For systems where the narrow band width does not exist the authors
and their coﬂeagues”g’76 have worked toward the development of solution
procedures which require a single inversion of the stiffness matrix. Some
success has been achieved in this area as indicated by a recent publication
on this subject.120 Once these solution procedures are perfected the
authors believe that complex problems can best be treated by making rea-

sonable simplifying assumptions for the effects of nonlinearities.



Literature Survey

The literature survey was conducted by studying numerous papers and
making copies of the papers which appealed to the authors. Undoubtedly,
the literature survey is incomplete and it will be appreciated if other
papers are called to our attention. Further, many of the papers listed
in the references will not be discussed in this section. The primary
criterion for discussing the paper is whether or not it contributes some-
thing new to the formulation or method of solution for plasticity problems.

To start the survey it may be valuable to point out other survey
papers which contribute significantly to the field. First, in the funda-
mental theory of plasticity, a very comprehensive review of the various

47 and less com-

25

available theories is given by Isakson, Armen, and Pifko

50 and Felippa.

plete, but in a well written manner by Khojasteh-Bakht
Iﬁteresting]y none of these references cover the sublayer model used so
successfully by the finite difference researchers. Discussions of this
model may be found in Refs. 44, 54, and 127.

The present trend is to use the Von Mises yield criteria and associated
flow rule. Isotropic hardening is frequently used but it can be expected
that in the future more use will be made of Ziegler's modification of

132 as it properly accounts for the Bauschinger

Prager's hardening rule
effect. The present research uses the Von Mises yield criteria, isotropic
hardening, and elastic unloading.

Survey papers pertaining to geometric nonlinearities include those
74,75 85

by the late Harold Martin,

Oden, = and several from the group at
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34,35,119 References 119 and 23 show the equivalence between

Texas A&M.
the Eulerian and Lagrangian formulation for a simple truss element while
Refs. 34 and 35 present rather complete literature surveys for geometric
nonlinearities and a comparison of solution procedures. The literature
on geometrically nonlinear problems will not be covered in the present
survey. This survey is limited to the solution of plasticity problems
and for combined material-geometric nonlinearities. The survey is also
limited to small strains.

The survey of the literature will be presented according to the me thod
used in the solution of the resulting equations of equilibrium. For the

present, the only type of nonlinearities considered are those due to

plastic strains. The basic equations of equilibrium are of the form

[K1{q} = {P'} + {Q(a)} (1)
where [K] = global stiffness matrix
{gq} = column matrix of generalized displacements
{P'} = generalized forces due to applied loads
{Q(a)} = column matrix of pseudo forces due to plastic (initial) strains.

Ideally, Ea. 1 is exactly satisfied. However, with many methods, the
equations of equilibrium are only satisfied to within a certain degree of

accuracy. For this reason it is convenient to define an unbalance of

force term given by

{(f} = - [Kl{q} + {P'} + {Q} (2)

where {f} is the amount of out of balance in force which exists.




The first class of solution procedures are those which satisfy the

equations of equilibrium exactly. For this class, {f} = {0}. .
The first procedure used to satisfy {f} = {0} is the method of suc-

cessive approximations. In this method the load is increased in increments

and, at each increment of load, iteration until covergence is performed

using the recursion relation

where i is the ith iteration and {01-1} are the pseudo plastic forces
based on the generalized displacements at the (i-1)th iteration. The

process is usually started by a simple linear extrapolation based on pre-

79

vious solutions. Mendelson and Manson’” first proposed the method of

successive approximations in 1959. Others to discuss the method are

3 17 26 36 67

Argyris,” De Donato, ‘' Fowler,“" Havner,” Marcal, ’ and Witmer and

128

Kotanchik. The main difficulties which are encountered with the method

are the very slow rate of convergence for large plastic strains and the

tendency to converge to the incorrect answer for elastic-perfectly plastic

17

materials. De Donato ' shows that his iterational procedure fails for

36

perfectly plastic materials. Havner”" stipulates a monotonically in-

creasing stress strain curve and shows that the iterational procedure

167

will converge but does not show the rate of convergence. Marca shows

that the method of successive approximations converges to the incorrect
answer for elastic-perfectly plastic materials. Witmer and Kotanchik]28
use this method to solve complex shell of revolution problems and state

in their conclusions that some technique is needed to accelerate convergence. .



Zienkiewicz, Valliappan, and King 3%

have presented a method of succes-
sive approximations which they call the initial stress approach. In Ref.
135 the authors show that the method of initial stress is in essence the
same as the method of successive approximation.

Another solution procedure of the class {f} = {0} is the Newton-
Raphson procedure first used by Oden and Kubitza.87 They solved for the de-
flection of a square plate with external pressure. The only type of stess-
strain behavior considered was elastic-plastic with appreciable strain
hardening without unloading. It will be shown in the present research that
consideration of elastic unloading causes the Newton-Raphson procedure to
fail to converge in many cases.

Another solution prodecure which satisfies the equation of equili-
brium exactly is the minimization of the total potential energy as pre-

sented by Stanton and Schmit.”4

In Ref. 114 the authors use deformation
theory instead of the more accurate and commonly used incremental theory.
This particular solution procedure is not evaluated in the present study.

A second class of solution procedures and by far the most popular to
date contains those methods which solve the equation {%} = {0} where the dot

indicates differentiation with respect to a load parameter. For example,

the load vector {P'} may be written as
{P'} = P(P} (4)

where P is some convenient normalizing term which, for convenience, is

taken as ranging from 1 to 100. Differentiation is then taken with respect

to P. From Eq. 2 the expression for {%} = {0} becomes




[K1{4} = {P} + (Q (5)

A frequently used solution procedure for Eq. 5 is to use an Euler forward
difference for {q} and a backwards difference for {Q}. Thus, for any

increment

[K]{aq}; = AP{P} + (80}, (6)

It is noted that Eq. 6 has a truncation error of AP.
Another form which is equivalent to Eq. 6 is in terms of the total

displacement and total pseudo plastic forces

[
[Kl{a3} = (P;} + {Q;_q} (7)

The form given by Eq. 7 is obtained by expanding {Qi} in a Taylor's

series expansion and maintaining only the constant term.

{03} = (0,1 + 4P (Q;_} (8)

It is seen that Eq. 7 has an error term of AP. Equation 6 and 7 are
essentially the same except that one is written in terms of increments of
displacements and one is written in terms of total displacements. This
is easily seen by noting that Eq. 6 may be obtained by subtracting Eq. 7
at i-1 from Eq. 7 at i.

Finally, returning to Eq. 5, chain rule differentation may be used
on the pseudo force term.

a0

(@ = frgH (9)
J

Substituting Eq. 9 into Eq. 5 results in




3Q, B
[(K] - [5g1a} = (P} (10)
J

Equation 10 may be solved by any of a large number of numerical proce-
dures. However the most common procedure is a simple forward integra-
tion procedure.

an.

The matrix [35%] in Ea. 10, although derived by a different approach,
is referred to here as the contribution to the tangent stiffness matrix. It
will be shown in the section on formulation that the combination of the
plasticity stiffness matrix and the usual linear stiffness matrix is
exactly the same as obtained from the incremental form of the virtual

work expression. In much of what follows, the plasticity stiffness

matrix will be denoted as
2Q.
. K] = - (55 (11)
J

Gallagher, Padlog and Bijlaard28 used Eq. 7 to solve plasticity
problems as early as 1962. 1In Ref. 28 they presented two approaches for
computing the plastic strains. These methods are referred to as the con-
stant stress and constant strain approaches. It was shown that the con-
stant stress method encounters numerical instabilities. These numerical
instabilities can not be overcome by reducing the load increment. In
fact, the reverse occurs in that the smaller the load increment, the sooner
the numerical instabilities occur. This approach or its equivalent given
by Eq. 6 has also been pursued in Refs. 3,5,46,56 and 82. The general
consensus of opinion gained from these references is that the initial
. strain approach given by Eqs. 6 or 7 is very slow to converqe with reduc-

tion in the size of the load increment.




Isakson, Armen, and Pifko47 present a slight modification of the
solution procedure given by Eq. 7. In their method, called the predictor
method, the pseudo plastic force terms are estimated based on their values
at previous loads. For example, this may be accomplished by a simple
linear extrapolation. The use of an extrapolation procedure does not seem
to introduce numerical instabilities into the solution procedure. For
geometric nonlinearities, on the other hand, solutions by Eq. 7 become

unstable for moderate nonlinearities and any type of extrapolation proce-

dure tends to hasten the instabﬂity.34

The incremental procedure as given by a simple forward difference

121

solution of Eq. 10 was developed by Pope,95 Swedlow and Yang, Marcal

72 131

and Yamada. The incremental procedure was further developed

5

and King
by Armen et al.” where Ziegler's modification of Prager's hardening rule
was used and problems involving cyclic loading were solved. In Ref. 5

the shear lag problem was solved by both the initial strain and the incre-
mental method. Results show that the incremental procedure converges
auite rapidly compared with the initial strain procedure. Further com-
parisons are given in Refs. 50 and 51 with the incremental tangent stiff-
ness method being judged the most useful.

Fe]ippa25

solved Eq. 10 by a two step method where the tangent stiff-
ness matrix is evaluated one half increment forward using a simple forward
difference procedure. This is sometimes referred to as a chord stiff-
ness matrix. Reference 25 also implies that the problem may be formulated
in terms of a first order nonlinear differential equation. Additional

discussion of the half step formula is presented by Akyuz and Merwin.]
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104

n

Blacklock ' and Richard and Blacklock solve Eq. 10 by the Runge-
Kutta procedure and present an inverse Ramberg-Osgood curve for the uni-
axial stress-strain relation. Results presented in Ref. 104 show that
excellent results may be obtained using a small number of increments with
the Runge-Kutta solution procedure. However, it should be pointed out
that the equations must be solved four times for each increment of load
and hence, this procedure may be quite time consuming.

The advantage of writing the equilibrium equations in the form given
by Eq. 10 is that this form opens the door to a very large class of
solution techniques. These include simple forward differences, predictor-
corrector schemes, Runge-Kutta methods, and so on. However, it has been

34 that for the geometrically nonlinear case, some of these

shown by Haisler
techniques are not applicable because of accuracy or stability considera-
tions. Consequently, this research will only make use of the Euler forward
integration method to solve Eq. 10.

Another noteworthy point is that many investigators7’72’]30’10 have
concentrated on the method of computing the contribution to the tangent
stiffness matrix, [KP], rather than the more significant problem of which
solution procedure should be used. A careful attempt to evaluate the
merits of each procedure is not attempted herein. The procedure used in
this research is the one popularized by Marca].7]

Two other classes of solution procedures which have only recently

been formu]ated35’75’120 are evaluated in the present study. These solve

the equations of the form

1



(F} + 2{f} = 0 (12)

and

{f} + C{f} + 2{f} = 0O (13)

where C and Z are scalar quantities. These forms are referred to as

120

self-correcting forms as the unbalance in force returns to zero whereas

{f} = 0 tends to drift away from the. true solution. For Z = %5 in Eq. 12
the procedure reduces to the form given in Refs. 43 and 119 which may be
interpreted as an incremental form with a one step Newton-Raphson correc-

19

tion. Solutions of the class given by Eq. 13 have not been used for

the solution of plasticity problems but have been found to be economical
for geometrically nonlinear pr‘oblems.35’]20
The literature on combined material and geometric nonlinearities is
quite limited and is represented by Refs. 1,7,25,43,68, and 129. Further
Ref. 1 reports that some of the matrices are unsymmetric and thus is ex-
cluded from consideration. Until very recently the only solution pro-
cedures used were of the second class, {f} = 0. Itwill be shown in
the present study that this is one of the most inefficient procedures for
the combined problem.

For purposes of discussion the equations of equilibrium for combined

material-geometric nonlinearities may be written in the form

(KI{q} = {P'} + (@3 + QN (14)

where, [K], (q} and {P'} are defined after Eq. 1.
lUpl pscudo forces due to nonlinear material properties (not the

same as {Q} in Eq. 1 due to the fact that expressions for the
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total strain include geometric nonlinearities and plastic effects).
{QNL} = pseudo force due to geometric nonlinearities.
The first derivative of Eq. 14 with respect to the load parameter is

written in two separate forms.

QNL an B
([K] - tgq—- [51) {q} = {F} (15)
and NL
20y p
(X3 - [———]){q} 4"y + (M (16)

In Refs. 25,43,68 and 129 the solution of Eq. 15 is obtained using a

1.83

simple forward difference expression. Hofmeister et. al.* control the

amount of drift by applying a Newton-Raphson iteration (f=0) after a

25 formulates the problem in the

specified number of increments. Felippa
deformed coordinates of the body. In Refs. 68 the deformed coordinates
are referred to but tne effects of the deflections and rotations are
neglected in the transformation matrix from locai to global coordinates.
The rigorous and correct derivation of the problem in the Lagrangian

34 In effect the deformed coordinates

coordinates is given by Haisler.
should not have been referred to in Ref. 68, but this oversight has no
bearing on the accuracy of the results.

Armen, Pifko, and Levine7 solved the combined problem through Eq. 16
where a simple backwards difference expression is used for {QP}. The
rate of convergence with load increment is much slower for Eq. 16 than

for Eq. 15.
Another possible form of {f} = 0, other than that given by Fas. 15

13

T T

« ]



and 16, is to include the [QNL] term on the right hand side as pseudo
forces in the same manner as [QP] is written in Eq. 16. This form is .
very appealing as it requires only a single inversion of the stiffness
matrix. However, a very exhaustive search for a stable numerical pro-
cedure presented in Ref. 34 has shown this form to be numerically unstable
for significant nonlinearities.

Finally to complete this section, a review of two other aspects of
the formulation of the plasticity problem should be reviewed. First, many
authors have stated that the initial strain (pseudo plastic forces) may
not be used for elastic-perfectly plastic material behavior. Armen,

Pifko and Levine7 have circumvented this difficulty treating the elastic-
perfectly plastic case separately.

‘Actually, when one examines the computational procedure for isotropic
hardening it is observed that the same equation may be used with or without
strain hardening. Thus the difficulty is not associated with the basic
equations but with the fact that rather large increments of strain may be
obtained for a small increment of 1oad.24 These large increments of
strain may cause the numerical procedure to obtain stresses and plastic
strains which do not lie on the assumed stress strain curve. A computa-
tional procedure is presented herein which gives results that lie on the
assumed stress strain curve regardless of the strain increment. The im-
provement in the computational procedure presented herein makes it just
as easy to treat the perfectly plastic case as the strain hardening one.

The second aspect is the assumptions which have been made for the

variation of the plastic strains over the element. Much of the early .




research was associated with the solution of plane stress problems using
the constant strain triangle. Thus there was no difficulty associated with
the evaluation of the pseudo forces and tangent stiffness matrices. They
were obtained through a one point numerical integration formula based on
the value of the stresses at the centroid of the element. It should be
noted that this one point formula does not necessarily imply a constant
value of the plastic strain over the element as a linear variation may

also be evaluated by a single numerical station.

Feh‘ppa25

used the values of the three corners of a triangular ele-
ment to evaluate the needed terms in the tangent stiffness approach. For
this calculation he used the average value of the stress at the nodes.
His example problem showed an appreciable improvement in results for this
lprocedure as compared with the one station numerical integration.

In Ref. 7 a linear variation of the plastic region was assumed for
the element. However, these authors assume a Tinear variation of the
Plastic strain from the outside surface to zero at some internal station.
This assumption is only valid when the entire region lies on the some
linear segment of the stress-strain curve.

In Refs. 50 and 51 a linear variation of the matrix relating the
Plastic strain increment to the total strain increment is used over the
meridional length of a shell of revolution element. However, only the
displacements of the element under consideration were used to evaluate the
strain increments between elements and therefore the plastic strains

are not continuous between elements.

Bergan and Clough]0 evaluated the tangent stiffness matrix of a
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quadrilateral element by first subdividing the element into twelve tri-
angular elements. The values of stresses, etc. at the centroid of each .
triangular element are assumed to apply over the sub-element. Consider-
able effort was devoted to developing an efficient algorithm for computing
the tangent stiffness matrix. Computer times of 0.54 to 0.69 seconds of
CDC 6500 CPU time are quoted for computing the element tangent stiffness
matrix using eleven integration stations through the thickness.

Marca]68 bases the element rigidity matrix for the element on the
values of the stresses at the center of the element and then numerically
integrates the displacement function to obtain the tangent stiffness
matrix. This appears to be a very reasonable approach.

There does not appear to exist any fundamental mathematical proof as
to what condition must be satisfied to assure convergence in the computa- .
tion of plastic strains. However, it seems reasonable to the writers
that the stations selected in the numerical integration process should be
those where accurate values of the stresses may be computed. If this
assertion is true, it implies that only the centroid of the element and
the corners where the stresses are computed as average values of surrounding
elements may be used in the integration process. The present study evaluates
all integrals over the length of the element through strip integration
using only values at the mid-length of the element. Convergence studies

show that accurate results may be obtained with relatively few elements.

Scope of Research ‘

The purpose of the present study is to evaluate the various solution .
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procedures for material nonlinearities and combined material-geometric
nonlinearities. A study has already been conducted for geometrically non-
Tinear solution procedures. During the course of the present study it

was found that many conclusions reached for geometrically nonlinear prob-
lems do not apply for material nonlinearities. For example, the incre-
mental approach is quite efficient for plasticity problems but tends to
drift appreciably for geometrically nonlinear problems. Furthermore most
extrapo]atfon procedures lead to numerical instabilities for geometric
problems but are quite stable for plasticity problems. The many differences
are discussed in the section on solution procedures.

There is considerable question regarding the correct material flow
rule and, in fact, experimental results have shown that some of the flow
rules do not adequately describe actual behavior. It is not the purpose
of this research to dwell upon the development of material laws or even
to assess which is the most correct. Rather, this paper concerns itself
primarily with the development of efficient solution techniques for solving
the governing equilibrium equation. The Von Mises yield criterion with
isotropic hardening and elastic unloading is assumed in this research.
However, it is believed that the conclusions reached in this report re-
garding the efficiency of computational procedures will be valid regardless

of the yield condition and flow rule used.




FORMULATION OF EQUILIBRIUM EQUATIONS

"~ The purpose of this section is to present the formulation of the
equations of equilibrium as related to the various types of solution
procedures. The formulation as presented herein is symbolic and con-
sequently applicable to any type of incremental plasticity Taw and any
of the numerous finite element models. The plasticity law for isotropic
hardening of shells of revolution under axisymmetric loads is presented
in the next section and the details of the computational procedure for
shells of revolution are presented in the following section.

Starting with the equilibrium equations for large deflections and
large strains in terms of the undeformed coordinates, then multiplying

by virtual displacements in the x, y, and z directions and applying the

divergence theorem yie]ds:34
[ lo*] {8e}dV = sW* (17)
v
where |o*] = Stress tensor referred to the undeformed areas
{8e} = Virtual change in the total strain tensor including the
contribution due to large deflections.
SW* = Virtual work of external and body forces as computed in
the deformed coordinate system.
V = Volume of undeformed body.

Equation 17 is valid for any type of material and for large deflec-

tions and large strains. The present investigation is restricted to small

strains and thus
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lo*] = Lo} (18)
where |o] is the usual engineering definition of stress and is related
to the elastic strains through a matrix [D].
{o} = [D1{c&) (19)

As small strains are assumed the total strain is the linear super-

position of the various components.

(e} = (B + (T + {1 + ... (20)
where {e} = total strain
{e®} = elastic strain
{eP} = plastic strain
{eT} = thermal strain

Solving Eq. 20 for the elastic strain, substituting into Eq. 19 and sub-
stituting the result into Eq. 17 yields:
P. T -
S (le) = le ] - lej+ .. .)[DI{se}dV = &sW* (21)
v
For some problems the potential due to external forces may be a higher
order function of the displacements; but, as usual, the assumption of a

first order function of the displacements is assumed herein.

W*

lqI{P'} (22)

Thus,

SW* = {P'|{sq) (23)

Taking the variation with respect to generalized coordinate a;




yields the equation of equilibrium:

l (D] {e} dV - s l ] [01¢cF3av - [ J [D1{e'}dV - . . = P!

(24)
where P% is the generalized force associated with the external applied

loads.

It is convenient to write the total strain as

e =g +ey (25)
where €L and ey, are the linear and nonlinear contributions, respectively,
to the total strain. Substituting Eq. 25 into Eq. 24 and expanding the
first term on the left hand side, yields

de
f 13551 (0] e[} dV + 7

- 1 125 1ty - s l———1 [D] {e'}dV - . . . = P (26)

aq q;

The first term in Eq. 26 gives the contribution to the usual Tinear
stiffness matrix, K, times the generalized coordinates, aj- The re-

maining terms may be combined to yield

o€
= p! NL _ 3¢ P _T
Iykij 95 =P - S gy ) O e}V - 7 15 D1ey e - .
(27) L ]
Writing Eq. 27 for each and every degree of freedom i yields the com- .

plete set of equilibrium equations:
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(K] {q} = {P'} + (Q*} (28)

where

Be
aq

O = - 7 lggt (0] (e ddV - g 13 sap) Oiey - -t - 4w (29)

The last term on the right side of Eq. 26 is generally called the
pseudo force and is a function of the unknown displacements.

In Eq..29 the pseudo forces due to material and geometric nonlineari-
ties are included together instead of separating them into components

as indicated in Eq. 14. The separate terms are given as:

P

Q =f l J [D]{e }dv (30)
AL dENL
Qi = l J [D]{eL}dV - laq | [D]{ENL}dV = -7 l J [D]{e L}dV
ae
-J laq1 ] [D1{e}dV (31)

The last form of Eq. 31 is the more efficient from the computational

point of view when only geometric nonlinearities are considered. Further

for a unstiffened shell the pseudo forces due to geometric nonlinearities

may be integrated exactly through the thickness provided nonlinearities in

the curvature expression are excluded. Thus, the assumption is made that

{e} = {e} + {ENL} + z{x} (32)

where {e} are the usual expression for the linear membrane strains,
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{x} are the changes in curvature, and z is the distance from the mid-sur-
face of the shell. In light of Eq. 25, it should be noted that the first
and third terms of Eq. 32 constitute {sL}, i.e., {eL} = {e} + z{x}. Sub-
stituting Eq. 32 into Eq. 31 and integrating through the thickness yields

aeNL
aqi

n

Q5" = -t flg—:ij [Dl{ey } dA - t s 1z0==1 [D)({e} + {ey })dA (33)

where t is the thickness and dA is a differential of surface area.

Several points should be noted pertaining to Eqs. 29-33. First the
pseudo forces due to initial and thermal strains are not constants as
the term 1231 depends on the disp]acements({eNL} is a second order func-
tion of the displacements). Second, if the midsurface of the shell yields
it is a simple matter to include part of the contributions due to geo-
metric nonlinearities as given by the second term of Eq. 29 and the rest
by the last term in Eq. 33 with the term {eNL} being omitted. This has been
found to save appreciably on computer run times.

At this point, attention must be focused on evaluating the integrals
in Eq. 29 . There has recently been considerable disagreement over this
point between finite element and finite difference researchers. Origin-
ally, finite difference equations were formulated from governing differential
equations. Recently, several investigators (Ref. 55) have turned toward
finite differencing of the strain energy. Most finite etement formula-
tions have tended toward exact, closed form integration of the strain
energy; particu]ér]y in obtaining the stiffness matrix. The present research

seeks to combine and utilize the best aspects of both approaches.
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In the present formulation, the linear stiffness matrix is evaluated
exactly in closed form. This is based on the contention that the element
stiffness matrix should be represented as accurately as possible. However,
in treating the nonlinearities, certain simplifying approximations are used
which greatly reduce computation time. First, the strains, rotations, and
change in curvatures are evaluated using finite difference expressions and
are written in terms of the global generalized coordinates. The partial
derivatives of the strains with respect to the generalized coordinates are
then easily evaluated. Simple strip integration is used over the area of
the element while more exact Euler or Simpson integration is used through
the thickness. With the present formulation, the plastic strain effects,
thermal effects, and so on are taken into account by simply computing and
subtracting the appropriate component in the last term of Eq. 29 before
performing the integration.

The key to the computational procedure consists of evaluating the par-
tial derivatives of the strains, rotations, and changes in curvature with
respect to the generalized coordinates. These partial derivatives are
used quite frequently throughout the entire analysis. For example, the
strains, rotations and curvatures are simply linear functions of the general-
ized coordinates and are obtained by summing the derivatives times the
respective generalized coordinates. The details of the computational pro-
cedure for shell analysis will be presented in a later section.

In some solution procedures such as the Newton-Raphson method or the

first order differential equation approach it is necessary to compute a
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contribution to the tangent stiffness matrix. From Eq. 28, letting {P'}

= P{P} and taking the derivative of Eq. 28 with respect to the load
parameter P, yields.
[K1{d} = (P} + {Q*} O (38)

where the dot denotes differentiation with respect to P. Further, using

chain rule differentiation on {Q*}, Eq. 34 may be written as

([K] + [K*1) {q} = {P} (35)
where
..
i 3q; (36)

Although the development of the [K*] matrix has been shown only for the
above first-order differential equation form, this matrix is necessary
in all solution procedures involving the use of a tangent stiffness
matrix including the Newton-Raphson method and others.

Applying Eq. 36 to Eq. 29 yields the terms of the contribution

to the tangent stiffness matrix as

30* 325
K¥. = - —1 = 5 |— | (D] (e} dV
1 qu Z)qiaq:l L
EN azeNl_ P T
+ s [5?1 [D] {—} v+ 7 l3gaas anJ [Dl{ey -e -¢ - .. LAV
de
la—q—l 0] {5 NL} dv (37)
p
; ,laq I (0] {—J} dv
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It should be pointed out that the thermal and initial strains are assumed
to be independent of the displacements. Further, in writing the third
term on the right hand side of Eq. 37, the fact that the second partial of

the total strain yields only that contribution due to the nonlinear terms

has been accounted for, that is,

2
2% _ ey (38)
CCRTR 390

It should be noted in Eq. 37 that there are contributions due to
thermal, initial, etc. strains. However, the first and third terms in
Eq. 37 may be combined to yield:

2

ENL
4 laq 3q;

2

d €
+ 7/ laq g: J [D] {CNL P 'ET = . . .} dv

] [D] {e} dv

-] (D] (e® (39)

where {e®} is the elastic component of the strain defined in Eq. 20.
For those readers accustomed to evaluating the tangent stiffness matrix
based on the concept of initial stresses it may be noted that [D] {ee}
are simply the stresses that exist in the structure.

Regardless of the incremental or plasticity theory being used it

is always possible to write a relationship between the increment of

plastic strain and the increment of total strain




(de™} = (€] {de) (40)

where the matrix [C] depends upon the previous state of stress and strain
history. Dividing each side of Eq. 40 by dqj yields the desired relation
{3—€—P-} = 0] 24 (41)
3q; 395
Using the relations given by Egs. 39 and 41 in Eq. 37 and making use
of Eq. 25 in the next to the last term of Eq. 37 yields the final somewhat

simplified form for K?i

L1 d¢e ae €
S "L BRI l—-—J (0] {5oo}) oy
J J
2
o€ 3 €
NL L _____EL_ e a
*7 Iy ) * s D1 @
[Y
. 15571 [0] (C] {an} (42)

It is noted in Eq. 42 that the matrix [K*] is symmetric provided that
the product [D] [C] is symmetric. This is true for the case of isotropic
hardening used herein. Further, it is noted that many of the same deriva-
tives appear in Eq. 42 that appeared in Eqs. (29-33). Thus, in reality,
the computation of the matrix [K*] is a minor addition to the computational
procedure needed for the pseudo forces.

Equation 42 is one form that may be used to compute the contribution

to the tangent stiffness matrix. It may be further simplified by integrating

the first two integral terms through the thickness; but, the last two terms
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must be integrated numerically through the thickness. It is believed

that this form is the most efficient one for computational procedures since
D] (%} is equal to the stresses which must be computed in conjunction
with the evaluation or checking for plastic strains. However, it has a
disadvantage in that the third integral is in reality due to a combination
of geometric and material nonlinearities. For that reason, the present

study separates the two effects and writes the third term as

2 2
e 3€
! laqigéjj [D] {®) dv = flgr’;‘:j'j [D1({e} - {ep} dv (43)

where no initial, thermal, creep, etc. strains are considered for the
present investigation in writing Eq. 43. Through the use of Eq. 43, Eq. 42

for K$J may be written as

- NL P
‘ K17 Ky Ky (a4)
where
at»: d¢e
NL _ NL €L
Kij f(laq1J[le }+1 J[D]{J})dv
2
de 3%e
NL NL
+ s l 3, =1 [D] {"_} dv + [WJ [D]{e} dV (45)
P 2 ey, ’e
Kig ==/ [aq 90; 1 101¢ePyav - ; lg—l (D1(C] {—} dv (46)

Equation 45 may be further simplified by using Eq. 32 and integrating

through the thickness of the shell
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o€ o€
st 1an'-1 0] (5o NL dA
2
9 ENL
+ttrs [aq 2a; 1 [D] ({e} + {ey}) dA (47)

It should be pointed out that the form for the pseudo forces re-
presented by Eqs. 29-31 and for contributions to the tangent stiffness
matrices represented by Eqs. 42, 45, 46, or 47 may be evaluated using a
wide variety of numerical integration procedures. For example, the
general form for the pseudo forces due to material nonlinearities given

by £q. 30 may be represented as

P
Qi m n

Az A X WA g w? [-g-e—j [D}] {EP} (48)
area thickness 9

where
Q. = element plastic contribution (note that no

distinction is made between element contribution and total)

>
N
[}

increment through thickness

>
n

Area of element

>
zN

weighting function which depends on the type of numerical

integration being used.

Finally, it is a simple matter to show that for material nonlinearities

only, the present formulation for the tangent stiffness matrix reduces to

N

that given by Marcal. For linear strain-displacement relations, the

strains may be written as

Eloie st ot vouiahtgiamigpunti-ue e v e R



{e} = [B] {q} (49)
where {q} are the nodal displacements. Substituting Eq. 49 into Ea. 46

and noting that the first term of Eq. 46 is identically zero yields

(k"1 = - 7 1817 [orrcire) av (50)

When this term is added to the usual expression for the element stiff-

ness matrix, the complete tangent stiffness matrix may be written as

(1 + (k"1 = 7 1817 (1D1- (D1[CY) (B) av (51)

This is precisely the same form given by Marcal in a slightly different
notation.




PLASTICITY RELATIONS

The formulation which has been presented in the previous section is
valid for any incremental law of plasticity. All that is needed is a
method for the computation of the total plastic strain and a relationship
between the increments of plastic strain and the total strain increment.
The purpose of this section is not to present any new information regard-
ing plasticity relations but is simply to present the formulation and a
discussion of the Von Mises yield condition and associated isotropic
hardening law used in the present investigation. More detailed survey
papers have been referred to in the introduction. This section first
presents a rather intuitive approach to isotropic hardening as presented
by Crandall and Dahl]5 followed by the mathematical formulation which has
been popularized by Marcal.’) ‘ ‘

For an acceptable plasticity rule three separate conditions must be .
specified. These conditions are the stress state at which yielding occurs,
some rule that allows the calculation of the plastic strains or strain
increment, and a hardening rule.

It is known from dislocation theory that plastic strains are a re-
sult of the movement of dislocations. These movements are caused by shear
stresses and are for all practical purposes independent of the mean normal
stress. The yield condition which represents this phenomena is the Tresca
yield condition as shown in Fig. 1,along with the Von Mises yield condi-

15

tion. In this figure, o. and o, are the principal stresses for a plane .

S ]

stress condition. It is noted that the experimental data is in better




agreement with the smooth Von Mises yield condition than the Tresca yield
[} condition. For this reason, and ease of handling, most engineers prefer
the Von Mises yield condition for metals and this condition is used in the
present research. The Von Mises yield condition is when the shear stress
on an octahedral plane or the energy of distortion exceeds prescribed va]ues.ls’39
The equation representing this condition for a state of plane stress for an

isotropic material is given by:

¢ = cg + cg - o5 gy t 3'05e -q 2 (52)

where Tg» Ogs Tgq are the normal stresses in the s and ¢ directions and
the shear stress respectively.
G is the yield stress obtained for a uniaxial test specimen and may
. increase due to the hardening of the material.

Yielding occurs when ¢ > 0 with an elastic state existing for all

’ values of ¢ < 0.
Considering the fact that the yield surface is expanding (¥ increasing)
it is possible to represent all subsequent yielding by ¢ = 0 and conse-
quently it becomes possible to solve for 5.
o = (og + og - o5 oyt 3 oge)]/z (53)
The flow rule relating the increment of plastic strain to the
state of stress for isotropic hardening is of the same form as the ex-
pression for elastic strains except Poisson's ratio is equal to 1/2
-

indicating an incompressible body during plastic deformations. For the
15

¢ plane stress condition the increments of plastic strains are given by:




P _ de
de_ = — [OS - .5 Oe]
o
-P
dEz = %fr— [og = -5 o] (54)
-P
P de
des9 3 —5— Igg

where dez, deg, and deSPe are the increments of plastic strain and dEP
= increment of equivalent uniaxial plastic strain. It is noted that the
term Q%_ is the proportionality factor for a plastic strain increment as
1/ iscthe factor for elastic strains.

This rather intuitive presentation for the plastic strain increment
has a very sound mathematical foundation which is commonly referred to as
the normality condition. The condition simply states that the direction

of the plastic strain increment must be normal to the ¢ = constant sur-

face. Thus the plastic strain increments are given the compact notation as

tde"y = azP 2 (55)

Finally the hardening rule for the material is simply the relation
between the plastic strain increment dEP and stress increment do for the

uniaxial case.

-P

do = H' de (56)

For the case of piecewise linear strain hardening shown in Fig. 2, it

is easy to show that:
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H' = =—%—
. EE, (57)
The other relation needed to complete the formulation is the equation
relating the increment of stress to the increment of plastic strain.
{do} = [D1{de®} = [D](({de} - {de"}) (58)
Premultiplying Eq. 58 by 1%%1 and using Eq. 55 and 56 yields:
30 a4 = wea=P _ 30
(o {do} = do = H'de = [—J [D]({de}- de {a_o}) (59)
Solving Eq. 59 for dzf yields
-P l%gd[D]{de}
de = (60)
30
H 2 (013
| J
After computing the uniaxtal plastic strain increment, the column vector
é
of plastic strain increments is computed through Eq. 55 and then the
stress increment is computed from Eq. 58. This stress increment is added
to the stresses existing at the beginning of the increment and the re-
sulting values are used to compute the matrix [C] (Eq. 40 relating the
increments of plastic strains to the increment of total strain). Sub-
stituting Eq. 60 into Eq. 55 yields:
30, 30
{z=} =1 [D]{de}
{dep}= 20° 30! (61)
HY + 32 1[01{99-}
3o
[ J
thus
¢
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3g, 90
9 132 0

(€] = (62)

H o+ 13 015D

Several points should be emphasized in the computational proce-
dure. First, as presented above, the matrix [C] should be based on the
stresses at the end of the known increment. Otherwise the plasticity
matrix will lag by one increment of stress and consequently will impede
convergence.

The second point is that an examination of the derivation procedure
reveals that every step is valid for a perfectly plastic material (H' = 0)
as well as a strain hardening one (H' # 0). However, it was found that
for small values of H' or large load increments, the computational pro-
cedure yields uniaxial stress-plastic strains which deviates appreciably
from the assumed stress-strain diagram. This difficulty is avoided
herein by dividing the total strain increment into a number of smalier
equal strain increments. The same computational procedure outlined above
is used for the small increments with stresses being updated after each
cycle of computation. This is described in detail in the next section.

Unloading occurs when the value of dEP computed in Eq. 60 is less than
zero. When this occurs dEp and all terms in the matrix [C] are set equal
to zero. Furthermore no additional plastic straining is permitted until g
exceeds its previously maximum value. It should be noted that this gives
a negative Bauschinger effect which is unfortunately the case for isotropic
hardening.

The treatment of the transition region between elastic and plastic




54 and Yamada]3].

behavior is the same one presented by Krieg and Duffey
It is presented here for case of axisymmetric deflections of shells of
revolution (os6 = 0).

Let g and g be the values of the stresses at the previous load
where the point under consideration is purely elastic and Aog. Aog be

the increments of stress based on elastic material but which cause

- yielding of the point under consideration.

¢(c + ac%) > 0 (63)

Further, let k be a constant for which the stress increments

k Ao: and k Acg give ¢ = 0, i.e. on the yield surface. Then

g)z 3)2 - (og + k a6%) (o, * k 40%) - 2=0 (68)

(os + k Ao y

+ (oe + k Ao

where cy is the yield stress. Solving Eq. 64 for the constant k yields

-B + \[52 - 49, 8 ¢
e

k = (65)
Ad
where

2 2 2

bg = 0g * g = 05 I = Oy

B =4 o: (20s - oe) + Adg (20e - os)

868 = (80%)2 + (80%)? - 8% a0t (66)

s ) s ““%

After solving for k the values of the stress are advanced to those at
which yielding first occurs and the total strain increment is reduced by

(1. -k). The computations then proceed from Eq. 60 through 62 as presented
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before. Subsequent changes in the values of H' are controlled by changing
H' whenever EP exceeds prescribed values. As the strain increment is always
required to be small and drastic changes do not occur after initial yielding

this procedure has been found to be completely satisfactory.
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COMPUTATIONAL PROCEDURE

As stated in a previous section the basic philosophy used herein is
to obtain a highly refined stiffness matrix based on linear theory and to
approximate the nonlinear terms, both geometric and material, so as to
produce an efficient computational procedure. The purpose of this sec-
tion is to present the details of the computational procedure for evaluat-
ing the pseudo forces and contributions to the tangent stiffness matrix.
For simplicity attention is restricted to axisymmetric deflections of
shells of revolution; but the procedure has been developed and is opera-
tional for the asymmetric deflections of shells of revolution. This
extension simply requires the inclusion of a shear stress and numerical
integration around the circumference of the shell.

The element stiffness matrix is evaluated by using cubic functions
in the meridional distance, s, for all displacements and eliminating the
two (four for asymmetric case) additional degrees of freedom through

78 have shown that this yields

static condensation. Mebane and Stricklin
an element stiffness matrix with excellent rigid body characteristics

even for relatively large subtended angles. The curvature of the shell

in the meridional direction is represented in the manner given by Stricklin,

1.]16 The net result of these refinements is a highly accurate ele-

et. a
ment stiffness matrix which has been shown to yield accurate results with
only a few elements through numerous solutions of both static and dynamic
problems over the last three years. The refinements mentioned above do

require additional computer time but the total computer time required to

generate the global stiffness matrix is rather trivial when compared with
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the computer time required to solve nonlinear problems.

The best way to describe the representation of the nonlinearities
{s to simply state that finite difference expressions are used with the
various terms being evaluated at the middle of the element in the meri-
dional direction. This finite difference representation does not reauire
points external to the shell and discontinuities in slopes between ele-
ments may exist. This representation was first presented by Stricklin,
Haisler, et. 31.118 in 1968 and has undergone several degrees of refine-
ment since that time. At present, simple finite difference expressions
are used in conjunction with conical frustum elements. The conical frustum
elements are used to circumvent the rigid body displacement problems which
are associated with curved elements and lower order displacement functions.

A critical problem when material nonlinearities are considered is the
storage requirements. In the computational procedure presented here only
the values of the plastic strains, equivalent uniaxial plastic strain,
and the maximum value of the uniaxial stress are required for each element
and each numerical integration station through the thickness. The stresses
are computed based on the value of the total strain and the values of the
plastic strains.

When the midsurface of an element has yielded it is possible to in-
clude part of the geometric nonlinearities with the material nonlinearities
and thus speed up the computational procedure. However the procedure

described here treats the material and geometric contributions separately.

The coordinate system and displacements for a shell of revolution




element are shown in Fig. 3. S and 6 are the meridional distance and

circumferential angle respectively. ¢ is the slope measured from the

axis of the shell. u and w are the displacements in the meridional and

normal directions. The generalized coordinates, 4 ... qg» are measured

in cylindrical coordinates. The displacements in the circumferential

direction in Fig. 3 (q2 and 06) are suppressed in the present analysis.

The strains at any point through the thickness of the element are

given by:

1 2
s~ 8 toe3tzxg

m
]

+
€9 =~ € T Z Xg

(67)

where z = outward distance from neutral surface. It is noted that only

geometric nonlinearities due to a rotation e,3 are considered. The linear

expressions for the strains, rotations, and curvatures for conical frustum

elements are given as:

_ du
& T
e, = l-(u sin ¢ + w cos ¢)
e r
_dw
€3 * gs (68)
= - de]3
S ds
- _Sin ¢
Xg r &3
The various terms in Eqs. 68 are shown in Fig. 3.
* The equations relating the stress to the elastic strains are given by:
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- — (69) .
1-v
o v 1 &
0

Thus the matrix [D] in Eq. 19 is

E 1 v

(0] =
1-¥ v

|
(70) |

Writing Eqs. 68 in finite differeﬁce form is a simple matter with
the exception of the term €3 This term has two possible representa-
tions which are in terms of w at the ends of the element and the average
values of the rotations, a4 and dg> at the ends of the elements. The
first of these representations is the proper one as a finite difference
expression for a first derivative may be obtained by assuming a linear
displacement function. The representation of €3 in terms of 0 and dg
was tried some time ago and found to yield erroneous results. The finite

difference expressions used in this research are:

-Gy C€Os ¢ - a3 sin ¢ + Qg COs ¢ + a, sin ¢

& = L
& - 3" Y
—2r
9, sin ¢ - 93 cos ¢ - 9g sin ¢ + a, cos ¢
€4 = L (71)
_ % " 9%
XS" L ’
_ sin
& " r °13
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where ¢ = slope of conical frustum element
r = radial coordinate to middle of element
L = length of element

Equations 67-71 are the basic expressions needed to compute the pseudo
forces due to material (Eq. 30) and geometric (Eq. 33) nonlinearities and
the contributions to the tangent stiffness matrix (Eqs. 46 and 47). At zero
load, the displacements are zero and after the first increment of load the
displacements or the first guess for the displacements are taken as the
linear solution. Thus, there are two known values for the displacement
after any load increment. The computational procedure is the same for all

elements. Therefore the following description is for any element.

A. From Egs. 71 compute the partial derivatives of s €gs €135 X

and Xg with respect to each generalized coordinate.

Example:

S _ CcoS
i o (72)

The computation of these partial derivatives Js the key to an efficient

Computational procedure as they are used frequently in the computations.

B. Using the values of the partial derivatives in step A and the
latest known values for the generalized displacements, compute the values
of €gs €y Xg and Xg*

Example:
axs st

(73)

Xg = 30, G * 30g g

Bl
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C. Compute the terms of the matrix [D] given by Eq. 70.

D. Check to see if the element has previously yielded by determining
if equivalent uniaxial plastic strain at the upper or lower surface is

greater than zero. If previous yielding has occurred, skip step E.

E. Check for yielding at upper and lower surface based on elastic

behavior. This consists of evaluating Eq. 67, substituting the result

into Eq. 69, and éhecking the yield criteria given by Eq. 52 with Ogq 0.

If yielding does not occur, skip steps F and G.

F. Compute increment of strains, curvatures, and rotations based on

displacements at current and previous load step. For example,

Je aes aes aes
* 33, %93 * 3q; 2% *3g, A% (74)

G. For each numerical integration station through the thickness

perform the following calculations:

1. If yielding has not occurred at previous load increment check for
yielding. If yielding does not occur advance to next numerical
integration station and repeat the present step.

2. If this is the first time yielding occurs at the numerical inte-
gration station compute the factor k as given in the section on

plasticity relations. Advance stresses to yield stress and reduce

strain increment by (1.0 - k).



If element has yielded at the previous load increment, compute

the stresses at the beginning of the present load increment.

This is accomplished by subtracting the increments of strains,
rotations, and curvatures computed in step F from the total strains
computed in step B and subtracting the previous values of the
plastic strains to yield the elastic strains. The stresses are
then computed using the matrix [D] and the elastic strains.

Compute increment of equivalent total strain as given by:

2
')

It is noted that the equivalent strain increment is based on the

Ae = [(Aes)2 + (Aee)2 + AesAee]]/z (75)

expression for equivalent plastic strain increment. However, it
should be thought of as a defined reference value without much
physical interpretation.

Compute a number as given by

M = 2 (76)
AEAL

where AEAL is the allowable total strain increment and was
selected as .0002 in/in in the present study. M is rounded off
to the nearest integer value (greater than or equal to 1).
Divide total increments of strain by M.

For each subincrement of strain from 1 through M perform the
following calculations:

a. Compute o

5=l +ot -0 012 (77)
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C.

30
Compute {35}

‘Q’
|

[os - .5 oe]

@
Q

1
Qs |—

(78)

!
alj—

30 -
ace [09 -5 c’S]

Based on the value of equivalent uniaxial strain, set H'

in Eq. 61 equal to proper value.

comute di by Eq. 60. If di¥ <0, set &' = 0. Also, if
5 is less than 5 . for all load increments, dz’ = 0.
Compute dez, de: by Eq. 55.

Compute d°s’ doe by Eq. 58.

Add increments of stress d°s’ d°e' plastic strains dez, ds:,

dEP, to previous values.

Return to step a for next subincrement of strain.

Compute partial derivatives of total strain with respect to

each generalized coordinate for the element.

J€ aes ae13 3

S S
_—2 ==+ ¢ —_—t 7 —
3q, 3a; 13 2q; 39
(79)
_aie—.-.-i?_G-{-zE.x_G.

It is noted that the partial derivatives computed in step A are

used again.




s

10.

11.

If needed, compute contribution of this numerical integration
station to pseudo plastic forces and add to previous value.
From Eq. 48 the increment due to the station under consideration

is

AQi Az 2rLr Wl l—q—J (0] (") (80)

In this calculation the trapezoidal rule is used to integrate
T

through the thickness. Thus W? = .5 at Z = * 5 and 1.0 elsewhere.

If needed, compute contribution of station to plasticity stiff-

ness matrix and add to previous contributions.

a. Compute the matrix [C] as given by Ea. 62. If dz’ for last
subincrement in step 7 is zero, set [C] = [0]

b. Compute contribution to plasticity matrix as given by Eq. 46

using numerical integration of the thickness.

p
24Q, Je Je
i_ P b4 P 13 13
W— AK = -2nlr Az W [(D”es + D]ZE ) 3.
J 1 J
- l J (D] [C] {“—4] (81)

9%

where the subscripts on D refer to elements of the (D] matrix.

Return to step 1 for next numerical integration station.

H. If needed, compute the pseudo forces due to geometric nonlinearities

as given by Eq. 33.
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S T T T TR Tl W s gy

NL 1 2 %% ey
0;7 = -2wrLt [2 €3 (’éﬁ? Dyy * 30, Dyy)
e
13 1 2
*e3gg, Onleg*zep) (82)
* Dy, ee)]

I. If needed, compute the contribution to the tangent stiffness matrix due
to geometric nbnlinearities as given by Eq. 47. The expansion for this

term follows in the same manner as for Eq. 82 and is not given here.

The above computational algorithm is presented in flowchart form on
the following pages.

An attempt has been made in this section to present the details of
the computational procedure. It should be noted that the partial deriva-
tives computed in step A play a very important role in the calculations.
Further if a higher order numerical integration formula were used along
the length of the element, a procedure similar to the one just presented
could be used with the partial derivative béing evaluated at different
stations along the length as well as the thickness. Furthermore, it should
be observed that very little additional effort is needed to compute the
plasticity matrix than is already required to compute the pseudo plastic
forces.

The use of subincrements for the computation of stress and strain

44

increments was first proposed by Huffington ' to prevent obtaining a com-

plex value for k. While this has not been a problem in the present



research it was found that difficulties occur in staying on the assumed

stress-strain curve unless the subincrements are used. It should be noted .

that a different number of subincrements are used for each element and
each numerical integration station. The minimum number is of course one.

Since the writer's original implementations of the above, it has been
135

found that a very similar approach is proposed by Zienkiewicz and Nayak.
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COMPUTATIONAL FLOWCHART

COMPUTATION OF
ELEMENT CONTRIBUTIONS
TO {Q% AND K%

COMPUTE PARTIAL DERIVATIVES
OF STRAINS WITH RESPECT TO

GENERALIZED COORDINATES, [3<]

COMPUTE TOTAL STRAINS, el

COMPUTE
OF [D]

ELEMENTS
MATRIX.

STEP C

ELEMENT YIELDED
AT PREVIOUS |.0AD

STEP A

STEP B

RETURN TO BEGINNING
OF LOOP AND REPEAT
FOR ALL ELEMENTS.

OBTAIN PSEUDO FORCES AND
TANGENT STIFFNESS CONTRIBUTION
DUE TO GEOMETRIC EFFECTS.

STEPH & E

STEP G.

COMPUTE INCREMENT
OF TOTAL STRAIN, lad

This step is expanded on
the next page.

INTEGRATE THROUGH THICKNESS
TO OBTAIN PSEUDO FORCES AND

TANGENT STIFFNESS CONTRIBUTION
DUE TO PLASTICITY EFFECTS.




INTEGRATE THROUGH THICKNESS
TO OBTAIN PSEUDO FORCES AND

TANGENT STIFFNESS CONTRIBUTION
DUE TO PLASTICITY EFFECTS.

RETURN TO BEGINNING OF
LOOP AND REPEAT FOR
ALL STATIONS THROUGH

THE THICKNESS.

FOR THIS
INTEGRATION STATION,
HAS YIELDING OCCURRED
AT A PREVIOUS LOAD

FOR THIS STATION, COMPUTE
CONTRIBUTION TO TANGENT
STIFFNESS MATRIX (IF

NEEDED) AND ADD TO PREVIOUS
Sng'gggST EAT THIS STATION ACCUMULATED VALUE.
BEGINNING OF STEP G.10
INCREMENT.
. STEP G.3 FOR THIS STATION, COMPUTE
CONTRIBUTION TO PSEUDO
COS'V}%UETSESE"S F%Tﬁ’rﬁt A%“LNDCE PLASTIC FORCES (F NEEDED)
STRESS AND REDUCE STRAIN AND ADD TO PREVIOUS
STEP 6.2 STEP G.7-9
DIVIDE TOTAL INCREMENT OF
E%iﬂg#“?g?&”g&% STRAIN INTO M SUBINCREMENTS.
AND COMPUTE NUMBER OF FOR EACH SUBINCREMENT, COMPUTE
SUBNTERvALS INCREMENTS OF STRESS AND
M PLASTIC STRAINS AND ADD TO VALUES
STEP G.4 AT END OF PREVIOUS LOAD INCREMENT.

STEP G. 5-6
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CHECKOUT PROBLEMS

As is usual in the development of a computer program it is necessary
to check the entire development by solving some typical problems and com-
paring the results with known solutions, solutions by other researchers,
or experimental results. Two problems were chosen for this purpose.

The first is the large elastic-plastic deflection of a

torispherical shell shown in Fig. 4 which has been analyzed previously by

Yaghmai.]29 The geometrical dimensions of the shell are:
diameter of head skirt = 100"
radius of sphere = 100"
meridional radius of torus = 20"
thickness = .8"

The material of the shell is elastic-perfectly plastic with a yield stress

6 psi, and Poisson's ratio

5, = 30,000 psi, Young's modulus E = 30 x 10
v=.3.

Figure 4 presents the results from Ref. 129 for two different load
increments using the tangent stiffness solution procedure (no correction
term) and three sets of present results obtained by the Newton-Raphson,

tangent stiffness, and first order self-correcting procedure. This

latter procedure solves the equations of the form
(k + KN+ kP) aq) = (ap'y + 1.2 () (83)

The results from the Newton-Raphson procedure must be considered

the correct solution for a load increment of 60 psi. However, it should
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be emphasized that the "converged" solution depends on the increment of
load being used. From Fig. 4 it is rather obvious that the first order
self-correcting procedure gives considerably better results that the purely
incremental stiffness approach. Further the resu]fs are in reasonable
agreement with the results reported by Yaghmai.m9

The computer time used per load increment for each element was .09
sec (IBM 360/65) for the computational procedure presented herein as
compared with .765 sec. (CDC 6400) reported by Yaghamai. The present
results are for eleven stations through the thickness as compared with
seventeen stations used in Ref. 129. However, the number of stations
through the thickness has little effect on the computer time required
in either procedure.

The second problem chosen to check the computer code is a circular,

9 The plate has a

mild steel plate tested by Onat and Haythornthwaite.
thickness of .19", a diameter of 6.375", and was loaded by a .5" diameter
circular punch at the center of the plate. Young's modulus and Poisson's
ratio were taken as 29 x 106 psi and .32 respectively. A uniaxial yield
stress of 36,000 psi was used with perfectly plastic behavior up to an
equivalent uniaxial plastic strain of .011 in/in. Next, a secondary modu-
lus of 700,000 psi was used to an equivalent plastic strain of .05 in/in.
For plastic strains larger than .05 in/in the material was assumed to be
perfectly plastic. This stress-plastic strain behavior is shown in Fig. 5

which was plotted from the actual behavior of a numerical integration

station near the applied load. It should be noted that Ref. 91 does not

give the stress strain curve and thus the assumed behavior may be somewhat



in error.

In this analysis the material underneath the .5" diameter punch was
assumed to be rigid. Analyses were conducted using 25 and 11 elements and
by several solution procedures.

The theoretical and experimental results for the load-deflection
behavior are shown in Fig. 6. From this figure it can be seen that the
theoretical results are above the experimental results. Undoubtedly
part of this can be attributed to the assumption of rigid material under-
neath the punch. Considering this factor and the approximations in the
stress strain curve, the correlation between theory and experiment is
considered quite satisfactory. It is especially gratifying to observe
that accurate results are obtained using only eleven elements.

Theoretical curves for the equivalent uniaxial plastic strain,
meridional stress, and circumferential stress are shown in Figs. 7, 8, ¢
and 9, respectively. Excellent agreement is observed between the 25 and
11 element idealizations.

During the course of the study of the flat plate problem several
interesting observations were made. First, it was found that 5 numerical
integration stations were insufficient and in fact yielded meaningless
results. This occured after all numerical integration stations had yielded
on both sides of a node near the applied load. After considerable study
it has been concluded that this observed behavior can be explained by Eq. 51
for the tangent stiffness matrix. When all elements have yielded the >

plastic strain increment for perfectly plastic material is almost equal

%

to the total strain increment. Thus, the matrix {C] in Eq. 51 is almost




an identity matrix. For this case, a singularity exists due to the process
of numerical integration. The first term in Eq. 51 is integrated very
accurately as previously described. However a five point integration
through the thickness is rather crude and is believed to be the source

of inaccuracy. The difficulty is removed by using 11 integration sta-

tions through the thickness. Eleven trapezoidal integration stations

were used for all results reported herein. A comparison between trapezoidal
and Simpson integration is given in a later section.

The second interesting observation in the influence of using sub-
increments to evaluate the increment of stresses and plastic strains. For
the 300 pound increment Newton-Raphson solution it was found that as many
as 85 subincrements were used for a statibn adjacent to the applied load.
By forcing the procedure to use only a single subincrement the same
Ngwton—Raphson procedure failed to converge in 10 iterations at 1200 1bs.
The computer code automatically cut the increment by a factor of 4 (75 1bs)
and continued until the specified value of 3000 1bs was reached. Thus, the
use of subincrements influences the rate of convergence of the Newton-
Raphson procedure. The deflection at the center for 3000 1bs. load was
not appreciably different for the two cases but the one subincrement solu-
tion showed an equivalent uniaxial stress of over 100,000 psi which is

quite disturbing.

53

%4

T —— Dt vt P ey e S AR St R S



54

SOLUTION PROCEDURES AND THEIR EVALUATION

Anyone who expects the authors to specify one particular procedure
as being superior to all others will be disappointed. The objective of
this section is to simply point out the advantages and shortcomings of
each solution procedure. By performing this task in a systematic manner
it is hoped that the reader may gain insight into what procedure is best
suited for his formulation. The present section presents the solution
procedures according to class with cross reference of the more efficient

procedures being presented in the next section.

Test Problem

As the objective of this research is to test many different solu-
tion procedures, it was necessary to select a test problem which does
not reqdire excessive computer time and at the same time demonstrates the
desired behavior. For these reasons the eleven element circular plate
was chosen as the test problem. The eleven elements starting at the edge
of the load have equal lengths of .267". Eleven numerical integration
stations were used through the thickness. The yield stress of the first
two elements adjacent to the load were raised to 100,000 psi and 50,000,
respectively. The shape of the stress-plastic strain curve is that given
in Fig. 5 with a vertical translation of the curve for the first two
elements. The total load was selected as 6000 1bs. but run for larger
values in some cases.

The load deflection curve for this test case is shown in Fig. 10 as

obtained by the Newton-Raphson procedure and by the first order self-correcting




procedure (Eq. 83). The two numbers within the parentheses indicate the
number of iterations required and the number of stations unloading, respective-

ly. The converged solution for a load increment of 300 1bs. is of course

the Newton-Raphson solution, but it will be observed later that the self-
correcting incremental solution is closer to the true solution obtained
with load refinement. The Newton-Raphson procedure was used with a load
increment of 150 1bs. and found to be closer to the incremental solution.
By coincident the error in the self-correcting incremental procedure

for a 300 1b. load increment is compensated for by the error in computing
the plastic strains.

It is noted that a smal} degree of unloading (7 stations) occurs in
this problem. It was hoped that a more pronounced unloading would occur
to serve as a critical test for the solution procedures.

Figures 11 and 12 present the meridional and circumferential stress
respectively in the upper surface vs the distance from the center of the
plate. It is observed that the values of the stresses are in better agree-
ment than the displacements. While this is not the usual case in finite
element work it is not unrealistic for almost perfectly plastic materials
as used herein.

The movement of the stresses around the yield surface for two numeri-
cal integration stations which unload is shown in Figs. 13 and 14. It is
noted that the stress behavior cannot be approximated to any satisfactory
degree by proportional loading. Thus, deformation theories of plasticity
would be completely inappropriate for the present problem. The x's in

Figs. 13 and 14 go with the circles adjacent to them. The Newton-Raphson

_—
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solutions are not presented above 5400 1bs. due to convergence problems
and will be discussed in the next section. The points outside the original
yield surface are correct and indicate appreciable strain hardening.

Based on the results presented in this section for the values of
stresses and deflections it was decided to use the accuracy of the load-
deflection curve as a means of evaluating the different solution procedures.
The curve referred to as the converged solution is the solution which con-
verged with load increment refinement and was obtained by two different

solution procedures.

Exact Solution,f = 0

The first class of solution procedures is that in which the equations

of equilibrium are satisfied exactly. Here the function f is defined as:

(F1= - (K] (q} + P(P}+ (Q'h3+Q" (84)

NL}= pseudo forces due to geometric nonlinearities

where{Q
{QP}= pseudo force due to material nonlinearities.

The first procedure tested was the Newton-Raphson procedure. For this

procedure the load is increased in increments and a value for the first

guess of the displacements is obtained by some extrapolation procedure.

For these values of the displacements the function{f(qo)}is computed. After

this a value of {aq}is sought such that{f(q0 + 3q)}={0}. Expanding this

latter expression into a first order Taylor's series yields the expression

for{aql.

(k1 + 1KV + (k7)) aq) = (f(qy)) (85)




where
aQ'lL

NL i
1 S Y i A (86)
3,
and
Kk} = [a0§] (87)
2

{aq} is determined by solving Eq. 85 and the next gquess for {q} is {qo + Aq}
The force unbalance {f} and matrices [KNL] and [KP] are updated and a new value
of {aq} is determined by solving Eq. 85 again. The solution process is con-
tinued until hopefully the process converges.

The results obtained for the test problem by the Newton-Raphson pro-
cedure are presented in Fig. 10. However, it is noted that the maximum
lead abtained is 5400 Tbs. At this load the procedure failed to converge
in 1Q iteratfons. The load increment was automatically reduced twice by a
factor of 4 and each time failed to converge in ten additional iterations.

The Newtan-Raphsan procedure was the first procedure tested and con-
sequently a cansiderable effort was expended to overcome the convergence
difficuTties. The follawing were tried:

T. Under-relaxation. An under-relaxation factor was applied to the
dispTacement increments at each cycle of iteration. The relaxation factor
was reduced by .2 (from a value of 1.0) every three cycles with the minimum
value being restricted to 0.5. This process yielded one additional increment
of Taad after the load increment had been reduced by a factor of 4. Thus
for practical purposes the process did not yield any significant improvement
in canvergence characteristics.

2. Second order extrapolation - For most cases the first guess was
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obtained using a linear extrapolation of the displacement. A quadratic
extrapolation procedure was used and it was found that the process con-
verged in fewer jterations. However, it did not converge for a load higher
than 5400 1bs.

3. Reduction of load increment - The load increment was reduced to
150 1bs. and a second order extrapolation procedure was used for the first
trial values. This yielded converged results for a load of 5,750 1bs.
However, the procedure failed to converge for higher loads.

4. Modified Newton Raphson - The procedure was modified so that the
nonlinear stiffness matrix and plasticity matrix were updated at the beginning
of the increment and only every 4 cycles thereafter. This process shortened
the computer time required but again the process failed to converge for
a load above 5400 1bs.

Close examination of the iterational process reveals that the trial
values oscillate between values which cause loading and unloading respectively.
The process does not diverge but simply oscillates.

Referring back to the section on computational procedure it is obéerved
that the matrix [KP] can have discrete discontinuities when unloading occurs.
Since all the convergence proofs for the Newton Raphson procedure assume a
continuous first derivative, it is not possible to state specifically that
the procedure will converge when there is a possibility of loading with
elastic unloading. Furthermore under such conditions there is no unique
solution for the deflections. A1l these considerations lead to the conclu-
sion that additional refinements are needed in the Newton Raphson solution

procedure to make it applicable to problems involving complex combined
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loading-unloading behavior.

The very simplest form of the modified Newton-Raphson procedure is
obtained when the matrices [KNL] and [KP] are set equal to zero. For this
case the process reduces to the method of successive approximations as
given by Eq. 3. This method was tried on the test problem to only a limited
degree as it is a special form of the Newton-Raphson procedure. Results by
successive approximations indicated that the convergence rate is very slow
for large p]ast1c strains and that convergence does not occur for elastic
unloading. The convergence rate was so very slow in some cases that the
difference between successive values of the deflections was so small as
to indicate false convergence. The slow convergence rate has previously

been pointed out in Ref. 128.

Incremental Stiffness ,f = 0

As will be shown in this section a special case of {%}= {0} is the
incremental stiffness method which has been so popular in nonlinear analyses.
However, most researchers in nonlinear analyses have already realized thaf
considerably better results are obtained when the first order self-correct-
ing form is used. Consequently, only a short discussion will be presented
for {f} = (0.

Taking the derivative of Eq. 84 with respect to the scaler load para-

meter P yields

(K1 (@) = (P + (@™} + Py (88)

where the dot indicates differentiation with respect to P.



The simplest solution procedure for Eq. 88 is an Euler forward
difference for{ql}and an Euler backwards difference for {6NL} and {6P}. .
This form may be used for moderately nonlinear problems but a rather ex-
haustive study by Hais]er34 has shown that such a representation of {éNL}
is very unstable. For this reason no studies were conducted for {fy = {0}
with all pseudo forces on the right hand side.
Applying chain rule differentiation to {QNL} and to {QP} two other

forms of Eq. 88 are obtained.
(k1 + K1+ (k1) (@ = P (89)

(k1 + kM) 1y = Py + @) (90)

Equation 89 is a first order nonlinear differential equation which may
be solved by any one of a large number of solution procedures such as pre- ¢
dictor-corrector and Runge-Kutta methods. The only method considered
herein is the simple Euler forward difference which reduces to the incre-
mental stiffness approach. Results for this method applied to the test
problem with a load increment of 300 lbs. are shown in Fig. 15. It is
noted that the theoretical solution tends to "drift" appreciably from the
converged solution.

Also shown in Fig. 15 are the results for the solution of Eq. 90
using an Euler forward difference for {q} and a backwards difference for
{6P}. This solution procedure is quite inaccurate for a load increment of
300 1bs.

The remaining result in Fig. 15 is for the solution of Eq. 90 with

{ QP} being determined by a linear extrapolation procedure. This
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procedure improves the accuracy of the load deflection curve; but close
examination of the data reveals that an unrealistic elastic unloading is
obtained. The same type of extrapolation procedure was tried with the
first order self-correcting form but is not presented due to erroneous

results for unloading.

First Order Se]f—Correcting,% +2f =0

This particular solution procedure is referred to as a first order
self-correcting solution procedure. Applying this formula to the defini-
tion of {f} as given by Eq. 84 and using chain rule differentiation of

both {bNL} and {bp} yields

(iky + kMY + (k) cqrecPy + iR (91)

Equation 91 is a first order nonlinear differential equation which may be
solved by any one of a large number of solution procedures. The only pro-
cedure considered here is the Euler forward difference expression for {q}.

For this procedure Eq. 91 reduces to:

(k) + 1Ky + (kKP1) caq) = (aP') + ZaP(f) (92)

Comparing Eq. 92 with Eq. 85 for the Newton-Raphson procedure reveals a

great degree of similarity. In particular for ZaP = 1.0 the right hand

side represents the unbalance in force due to {aP'} and the total unbalance

at the beginning of the load increment. This has led to the naming of the

procedure as an incremental procedure with a one step Newton-Raphson
cor~r‘ect1‘on.”9 Experiences for ZaP = 1 have shown a considerable improve-

ment over the purely incremental approach. However for large load
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increments the procedure still tends to "drift".

The above explanation may be used to develop an intuitive feel for
the proper selection of ZAP. In the first place since{f}is the value of
the force unbalance at the beginning of the increment, then (f} at the end
of the increment will be slightly larger and thus a factor of ZaP > 1 is
indicated. However if the Newton-Raphson approach is converging by oscillat-
ing about the true solution it is clear that a large value of ZaP would
cause the solution procedure to diverge. Based on this argument and ex-
perience a value of ZAP of 1.2 to 1.3 is believed to be conservative from
a stability point of view and to increase the accuracy somewhat.

This logic was discussed at a recent conference with Levine61 who decided

to conduct a numerical evaluation of using ZaP > 1. He reports no appreci-
able difference between results for ZaP = 1 and ZaP = 1.3. Similar recent
studies by the present authors seems to confirm the conclusions reached by
Levine. These results are presented in a later section of this report.

Thus, in summary there are some doubts about the advantages using ZaP > 1

but little doubt about the increased accuracy obtained in going from ZaP = 0.0
(incremental stiffness) to ZaP = 1.0.

Results for the load-deflection curve of the test problem with ZaP = 1.2
are presented in Fig. 16. The results show that good accuracy is obtained
using only ten load increments and for all practical purposes the results
have converged for 20 load increments.

As the formulation given by Eq. 92 is self-correcting the idea arises
that it is not necessary to update [KNL] and [KP] every load increment.

This was studied with the results being presented in Fig. 17. It is noted
from Fig. 17 that 40 total increments with 13 updates in the coefficient

matrix does not change the accuracy appreciably. However, comparing the




results in Fig. 16 for 10 increments with the results in Fig. 17 with 13

updates reveals comparable degrees of accuracy. These results indicate

that it does not make much difference in accuracy whether one uses a

small number of increments and updates every time or uses a large number of

increments and only updates so that the total number is about the same.
Another form of f + If = 0 is obtained by using pseudo forces for

{6P} and the nonlinear stiffness matrix approach for {QNL}. Again the pseudo

force apprdach was not attempted for {QNL} as previous studies have in-

dicated numerical instability problems. Using a forward difference for

{&} and a backwards difference for {QP} yields

(k1 + 1K) taq) = (aP'y + (a0} _) 2aP(F, (93)

The test problem results using ZAP = 1.3 are shown in Fig. 18 for
three different load increments. The more refined results agree with
those obtained through Eq. 92. Figure 18 reveals that reasonably accurate
results are obtained when 60 increments of Toad are used. Figure 19 shows
how the results are influenced by not updating [KNL] every load increment.
It is noted that only the values at large values of the load are changed.
This occurs simply because geometric nonlinearities are not significant
for small deflections.

A comparison of the accuracy obtained through Eqs. 92 and 93 is shown
in Fig. 20 for 20 load increments. It is observed that the results ob-
tained through Eq. 93 are not nearly as good as the results obtained
using Eq. 92. For this reason the solution for combined geometric and

material nonlinearities would appear to best be achieved through Eq. 92.
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This of course depends on the formulation as in some formulations it is
very tedious to compute [Kp]. For nonlinearities due only to plastic de-
formations the solution through Eq. 93 appears to be very promising as it

involves only a single inversion of the matrix [K].

Second Order Self-Correcting f + Cf +Zf = 0

This particular form, which is called the second order self-correcting
form, is a result of a long and tedious search for a method of solution for
geometric nonlinearities which requires only a single "inversion" of the
stiffness matrix and is very economical on computer storage requirements.

It is a natural extension of the first order self-correcting form and is

very appealing since the equation is the same as for damped harmonic motion.
fwo different forms of this equation have been explored. In the

first (Ref. 120) the expression for f (Eq. 84) is substituted into the

equation ; +Cf + 2f = 0 and certain terms collected to yield the equation

for damped harmonic motion in terms of the displacement q. This form is then

solved by an implicit four point backwards difference formula for the displace-

ments as a function of the load P. The resulting solution oscillates about

the true solution for geometric nonlinearities but these oscillations are

undesirable for material nonlinearities.

76 of the equation is obtained as follows and was

The second form
studied herein. The particular form is for C = 0. First Eq. 84 is rearranged

in the form

- (5 P NL
(K] {q;} = P{P} + (Q;_3} + {Q;5y} - {f) (94)
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It is noted that the pseudo force terms are used as their known values at

i-1. The unbalance in force fi is determined from the equation.
(f} + 24f} = 0 (95)
which is
(f} = (A} cosVZ s + {B} sinVZ s (96)

where s has the range from 0.0 to AP. The matrices of coefficients {A}
and {B} are determined from the known values of {f} and {%} at the
beginning of the increment.

NL

(F(s = 0)) = (A} = - [KI{q;_y} + Py_y(P} + (Q_q} + (0, 1) (97)
(F(s = 0)} =VZ(B} = - [KI{q;_y} + (P} (98)

The derivatives of {QP} and {QNL} are omitted in Eq. 98 as they are held
constant over the increment as seen in Eq. 94.

Substituting the values for {A} and {B} given by Egs. 97 and 98 into
Eq. 96,using a backwards difference for {é}, and using the results in Eq.
94 yields the following recurrsion relation for {qi} in terms of known

quantities.
(@) = A )+ A, ac )+ (KT (A,PY + A, 10Ty + Ay (0F_11)(99)
9% 1194-2 2 94 3 4 V-1 5 (Yo7

where

- sin (VZ aP)/(VZ &P)

Ay

A cos(VZ aP) + sin (VZ aP)/ (VT 4P)

2
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A, = Pi - cos(\VZ AP)Pi_] - sin{(VZ aP)/VI (100)

+ 1. - cosVZ aP

>
1]

A=A4_

It should be noted that the application of the recurrence relation
given by Eq. 99 requires only the symmetric stiffness matrix and 6 one-
dimensional arrays.

The maximum value of P is chosen to be 100 and Z is varied in accordance

to:

(101)

Results for the test problem using the second order self correcting
form a;e shown in Fig. 21. It is noted that 200 load increments are needed
to give a reasonably accurate solution. However, only a single "inversion"
of the symmetric stiffness matrix is required.

It should be pointed out that the stability of this procedure is
controlled appreciably by the parameters C and Z in addition to the step

76 have indicated that a small positive

size AP. Massett and Stricklin
value of C inhances the stability but causes the response to be somewhat
"sluggish". The possibility exists of using a small negative value of C

in conjunction with a small value of Z as given by Eq. 101. It would
appear that the negative C would increase the response yet not be unstable.
Hopefully the small value of Z would retain the stability. This approach
is possible since the load increment AP traverses only a small portion of

the complete response history. This is, of course, one of several possibili-

ties that should be investigated.




DISCUSSION OF SOLUTION PROCEDURES

In this section the more promising solution procedures for geometric
and/or material nonlinearities are summarized. However, before summarizing
these procedures based on the studies presented herein, it should be em-
phasized that there is ample room for further studies. 1In particular the
forms for both the first and second derivative formulations should be studied.
Furthermore, the solution procedures presented herein should be subjected to
a more severé test, e.g. when a large percentage of the structure transcends

from a state of loading to elastic unloading.

Geometric Nonlinearities

For problems involving geometric nonlinearities there are three
procedures worth discussing. The first is the modified Newton-

35 which is the only method capable of yielding the exact

Raphson procedure
solution. This procedure requires some updating of [KNL] and a very large
number of iterative cycles where {QNL} is evaluated each time.

The second method is the second order self-correcting form as given in
Refs. 76 and 120. This procedure is very efficient on storage require-
ments and involves only a single "inversion" of the stiffness matrix. How-
ever, a large number of load increments must be used for accurate results
which implies many calculations of the pseudo force terms {QNL}.

The third method is the first order self correcting form.35 This
procedure has previously been evaluated for ZaP = 1.0 and was found to re-

quire many increments of load to achieve a converged solution. As each

increment requires the forming of [KNL] and the solution of a system of
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equations the method required considerable computer time. To show the
effects of using ZaP > 1.0 a shallow cap under a point load at the apex
was analyzed in the present study. The results are presented in Fig. 22.
The shallow cap was analyzed using a ZaP of 1.0, 1.1, and 1.3. The re-
sults for ZaP of 1.0 and 1.1 remained stable while the value of 1.3 be-
gan to oscillate beyond a load of 50 pounds.

This particular problem illustrates that the value of ZAP which may
be used depends 6n the shape of the load deflection curve. For stability
problems where the load deflection curve has a horizonal tangent or for
the test problem a value of 1.3 may be used with a reasonable amount of
safety. But, for a load deflection curve which shows a softening followed
by a rapid change to stiffening behavior, the value of ZaP >1.0 can give

rise to numerical instabilities.

Material Nonlinearities

For material nonlinearities only, the consensus of opinion of the
writers is that the first order self-correcting procedure is quite out-
standing. Both forms as given by Eqs. 92 and 93 yield good results.
Equation 93 is particularily appealing as a simple recursion relation may

be developed. This recursion relation is given by:

(a7} = By {0} + (K171 (B, (P} + By Q) + By (@G q))  (102)
where B.‘ =1 - ZAP
B, = aP(1 + 2P,) (103)

——

© g —




1 + ZaP

o2}
[}

B, = -1

The recursion relation given by Eq. 102 conserves computer storage
space, requires one "inversion" of the matrix [K], and yields good results
for a relatively small number of load increments as can be seen in Fig. 18.
The solution procedure as given by Eq. 92 requires fewer load increments
but requireé the computation of [KP] and the solution of a set of algebraic

equations for each load increment.

Combined Geometric and Material Nonlinearities

Two solution procedures are suited for the analysis of combined
geometric and material nonlinearities. The first is the first order self-
correcting procedure in the form given by Eq. 92. The other procedure is
the second order self-correcting procedure using the recurrence relation
given by Eq. 99.

Comparing the results in Figs. 16 and 21 reveals that comparable
accuracy is obtained using 10 increments in the first order self-correct-
ing or 200 increments in the second order self-correcting procedures. The
required number of increments for comparable accuracy would be shifted
considerably for problems involving predominatedly geometric nonlinearities.
The shift would be to the benefit of the second order self-correcting

procedure.

Simpson vs Trapeziodal Integration

For all the results presented in this report trapeziodal integration
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was used through the thickness with eleven integration stations being
used. This was thought at first to be the best choice since the deri-
vative of the plastic strain may be discontinuous through the thick-
ness. However, in an attempt to improve the computation efficiency the
relative merits of Simpson's vs. trapeziodal integration was studied with
the results being presented in Figs. 23 and 24. It is clear from an
examination of these figures that Simpson's integration is clearly
superior to the trapeziodal integration rule. A simular conclusion
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has previously been reached by Krieg™~, who also tested higher order

integration formulas. The plate considered in the example was the
9

original test plate of Onat and Haythornthwaite.




CONCLUSIONS

The primary conclusion to be reached from this study is that due
to the efforts of a large number of people it is now possible to in-
clude nonlinear effects in stress analysis without the expendi ture
of excessive amounts of computer time. With further developments in
solution procedures and formulation it should be possible to reduce
the required computer time further. The efficiency of these computational
procedures is evidenced by the relatively short run times - on the order of
one minute on the IBM 360/65 for the problems studied herein. The program

is written entirely in FORTRAN IV and readily adaptable to most computers.

In the past, most nonlinear solutions have been restricted to
specific problems (plate with circular hole, etc.) and very few attempts
have been made to solve large-scale problems involving both geometric

- and material nonlinearities. For the few existing computer codes
which attempt to solve large-scale problems, the computer run times are
excessive with run times of four hours being quoted. It is the writer's
opinions that the time has come to utilize recent advances as presented
herein and elsewhere for the development of efficient computer pro-
grams. The research group at Texas A&M University has already moved in
this direction by developing codes for the static and dynamic analysis

of shells of revolution under asymmetrical mechanical and thermal 1loads

including both geometric and material nonlinearities.
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